

PIANC INCOM WG 141: "Design Guidelines for Inland Waterways" – Status-Information for INCOM, February 1st, 2017; Bernhard Söhngen

PIANC WG 141: Design Guidelines for Inland Waterways; Status-information for INCOM, Brussels, February 1st, 2017, Bernhard Söhngen

No.	Year, Location	Main topic	Main results		
1	2010, Liverpool	Subject and TOR, general approach	Start review existing guidelines		
2	2010, Karlsruhe	Table of contents	Commercial vessels only		
3	2011, Brussels	Collection of existing guidelines	Definition of design vessels		
4	2011, Paris	Review existing guidelines	Need to consider safety & ease		
l.1	2011, Brussels	Workshop planning	Best practice in rivers instead of using guidelines		
5	2012, Bonn	Fairways in canals, rivers, bridge , turning basins	Dimensions for concept design method in terms of ship beam		
1.2	2012, Madrid	Application of ship handling simulators (SHS)	Need for case by case design, especially for locks		
6	2012, Utrecht	Fairway rivers, turning basins, berthing places	3-step design, best practice fairway rivers		
7	2013, Antwerp	Discussion on safety and ease (s&e) and lock approaches	Lock approach dimensions, turning basins		
1.3	2013, Maastricht	Workshop Smart Rivers Conference	Positive feedback, especially concerning narrower standards		
8	2014, Brussels	Findings Smart Rivers Conference 2013 (SRC)	Agreement how to involve SRC papers in the report, responsibilities to each Chapter		
9	2014, Bonn	Practice examples fairway width in rivers according to PIANC World Congress San Francisco 2014 (SFC)	Analysing additional practice data and comparison with guidelines, especially those from US with flow influence		
10	2014, Lille	Test of SFC safety and ease approach in the light of examples	Application to examples		
11	2015, Brussels	Collection of contributions to the future report and distribution of tasks concerning open points	Agreement to perform a new workshop at SRC in Buenos Aires, simplifying s&e approach		
12	2015, Duisburg	Discussion of all the existing contributions to the report	Agreement concerning process recommendation for SHS usage		
1.4	2015, Buenos Aires	Workshop Smart Rivers Conference	Presentation and discussion of application examples		
13	2016 Cologne (Apr.)	Structure of the report	Special design aspects in one chapter 5		
14	2016 Antwerp	Application of the detailed design	Approach was generally accepted.		
	(June)	approach using ship handling simulators	example from DST (Danube River)		
15	2016 Berlin (Oct.),	Balancing Chapter 5 (special design)	Final decisions about concept design		
16	2017, Brussels	Results INCOM + finishing the report	Final meeting + reviewers in April		

Meetings with decisions

PIANC WG 141: Design Guidelines for Inland Waterways; Status-information for INCOM, Brussels, February 1st, 2017, Bernhard Söhngen

1 INTRODUCTION	
-----------------------	--

1.1 Background

- 1.2 Tasks according to the Terms of Reference
- 1.3 Differences to MARCOM 49 approach
- 1.4 General approach in waterway design
- 1.5 Contribution of the guidelines to the planning process of a waterway
- 1.6 Guide notes to the reader of the report
- 1.7 Definitions and designations

Need of revised guidelines because of

- larger, but better equipped inland vessels,
- better on-board information systems,
- pressure concerning economics and ecology ...
- → Strong demand for narrower standards!

To avoid the unsafe side: "Therefore WG 141 proposes a more generalized approach, basing on the • review of existing guidelines and the • corresponding Concept Design Method, the • consideration of practice examples in the so called "Practice Approach" and in special cases the • use of field experiments or simulation techniques" → 3 Steps-Approach

 INTR 1.1 1.2 1.3 1.4 1.5 	ODUCTION Background Tasks according to the Terms of Re Differences to MARCOM 49 approach General approach in waterway design Contribution of the guidelines to the pla	f erence anning process of a waterway			
1.6 1.7 Main Task • Consider according	Guide notes to the reader of the report Definitions and designations s: actual dimensions of vessels to international standards.	 Specification and restriction: We will focus on modern vessels (future view) dimensions of fairways lock approaches turning basins berthing places 			
 Take into and ecolo Consider Refer to a MarCom 	account the demands of climate change ogy. influences of wind, visibility, currents Ill relevant PIANC publications, especially to WG 49	 bridge openings Defining lower limits of navigational space based on nautical aspects only supports economical, environmental and climate change aspects (indirect consideration) 			
	"s&e" stands for "safety and ease of navigation"	 Concept Design: basic + extra widths Special s&e consideration, either for Concept and Detailed Design 			

•

- MARCOM-approach is quantitatively not applicable ٠
- But we took over the principles of Concept (basic ٠ dimensions + increments) and Detailed Design (how to use ship handling simulators)

Aspects considered in the guidelines, but no formulae or values given

1 INTRODUCTION

- 1.1 Background
- 1.2 Tasks according to the Terms of Reference
- 1.3 Differences to MARCOM 49 approach
- 1.4 General approach in waterway design
- 1.5 Contribution of the guidelines to the planning process of a waterway
- **1.6 Guide notes to the reader of the report**
- 1.7 Definitions and designations

Expert:

- Focus on Chapter 5 (+ Chapter 4: principles 3-steps), which deals with the three-step-approach for all selected design aspects separately (canals, rivers, bridge openings, lock approaches, junctions, turning basins and berthing places) and the interesting design aspect.
- Use appendixes, e.g. I (existing guidelines), III (s&e) or V (extra widths) only if necessary

Layman:

 Read Chapters 2 (fundamentals), 3 (s&e), 4 (3 steps) and 5 first and the corresponding other chapters and only appendixes if necessary. It is possible to read the report selectively according to the interesting design aspect only because of hundreds of cross-links between chapters and appendixes!

INTRODUCTION 1.1 Background 1.2 Tasks according to the Terms of Reference 1.3 Differences to MARCOM 49 approach General approach in waterway design 1.4 Contribution of the guidelines to the planning process of a waterway 1.5 Guide notes to the reader of the report 1.6 **Definitions and** 1.7 designations HR н MHW safety margin **Berthing Place Turning Basin** 1.2 L (ship length) Report uses internationally usual designations. ٠ In APPENDIX I (existing guidelines) the original ٠ abbreviations will be used.

2 2.1		TEC Clas	HN sifi	IC/ ca	AL I	NFORM of com	ATION merci	l al ve	esse	Is for	wa	terway design
		Exa	amp	le:	Rus	sian Cla	ssifica	tion			CI	assification
	0				L.4		Typica	l vesse	el [m]		ac	cording to
	Class		Н	leigr	nt	Length		Beam		Draught	di	fferent countries / rs.
				11	0	135		16.5		3.5	αι	uidelines!
	I		>	· 11.	0	128.6		16.5		3.5		
	II		11.	8 -	9.0	110.4		13.0		3.5		
	III			9.0		79.9		15.0		2.25		ata needed
	IV		9.0	0 - 6	6.5	63.1		14.0		1.60-1.80		
	V			6.5		55		12.0		135		
	VI			3.05	5	44		7.5		0.8-1.0		
	VII		3.05	5 – 1	1.25	35		7.5		0.8-1.0		
		Table	6: Ch	arac	teristics	of reference n	notor cargo	vessels	5			1
CEMT /ITF	beam	length	dr	augh	nt (m)	height above waterline	cargo capacity	er	ngine ower	bow thruster		
class	(m)	(m)	lad	len	empty	(m)	(tonne)	((kW)	(kW)	Ex	ctended classification,
I	5.05	38.5	2.	.5	1.2	3.5	365		175	100	e.	g. concerning
Ш	6.6	50 - 55	5 2.	.6	1.4	5.25	535 - 615	240	0 - 300	130	pc	owering
Ш	8.2	67 - 85	5 2.	.7	1.5	5.35	910 - 1250) 490	0 - 640	160 - 210		
IV	9.5	80 -105	5 3.	.0	1.6	5.55	1370 - 204	0 750) - 1070	250		
Va	11.4	110 - 13	35 3.	.5	1.8	6.40	2900 - 373	5 1375	5 - 1750	435 - 705		
Vla	17.0	135	4.	.0	2.0	8.75	6000	2	2400	1135		

2 TECHNICAL INFORMATION

- 2.1 Classification of commercial vessels for waterway design
- 2.2 Waterway infrastructure aspects (canals, impounded rivers, freeflowing rivers)
- 2.3 Driving dynamics relevant for the design (effects of confined waters, ship-induced waves and currents, human factor, bends, cross currents, groynes, wind)
- 2.4 Definition and clarification of design case and data needed

Explaining relevant infrastructure details by practice examples, depending on waterway type, e.g. lock width, depth over sill, lock length for impounded rivers

2 TECHNICAL INFORMATION

- 2.1 Classification of commercial vessels for waterway design
- 2.2 Waterway infrastructure aspects (canals, impounded rivers, freeflowing rivers)
- 2.3 Driving dynamics relevant for the design (effects of confined waters,

BW

2

2.1

2.2

2.3

2.4

TECHNICAL INFORMATION Example: Classification of col **Class Va vessel** Waterway infrastruc passes a groyne head flowing rivers) **Driving dynamics** ship-induced waves groynes, wind) Groyne field in the Upper Rhine River Definition and clarif at average low water level. A Class Va tanker has just passed the groyne head Reference to VBW publication (free download under: www.vbw-ev.de & www.baw.de Vessel-affected cross flow towards the vessel at the position of the largest drawdown **Driving Dynamics of Inland Vessels**

Figure 1: Flow vectors at a groyne head without (upper picture) and with drawdown influence (lower picture)

Struc	cture of the report	Remember: This is the firs	t and most important .g. to restrict effort!		
		(1) Definition clarification of th	and e design		
2	TECHNICAL INF		case(s)		
2.1	Classification of c	Renew clarification of relevant design cases (2) Choice and considerat	on of relevant conditions		
2.2	Waterway infrast	according to the demands local boundary con of the design method	ditions		
	flowing rivers)	Table 10: Check list of waterway properties	and environment high-volume increment for class		
2.3	Driving dynamics	VIa and VIb	waterways (m)		
	ship-induced way	Waterway properties	Environmental conditions		
	arownos wind)	concerning existing navigational space	environmental conditions in the past, how often		
	groynes, wind)	together with the corresponding curvatur	e did they happen and what were the		
2.4	Definition and	radius etc. – use information from loca	al consequences?		
	clarification of	Extra allowances necessary because of	Where is the canal located in an inland or		
	design case	possible leakage problems (dam situation), th	coastal stretch (definition e.g. according to		
	and data	bank protections (asphalt) or structures a	to define the design wind speed and the		
	needed	bridge piers?	corresponding wind gust factor?		
	lleeded	How large are relevant water level fluctuation	s Can an efficient wind protection e.g. from		
		irom surges, water management etc.?	acceptable effort?		
	The report	What about existing headroom at bridges	, What about relevant sight conditions (fog,		
	provides check	stability demands of bridge constructions an	d sailing at night etc.)?		
lists to support the		thus number of permitted container layers?	d		
	reader in finding	How large is the distance between existin	g Are there relevant (probability with respect to		
	relevant design cases	places where special manoeuvres a overtaking are possible or can be foresee with acceptable expenses?	 other influences) flow velocities (rule of thumb > 0.5 m/s) in the canal, e.g. from lock or power plant operation? 		

Are encounters of vessels with empty containers at strong wind design-relevant?

3	APPROPRIA ITS USAGE F	TE ASSESSM FOR DESIGN	ENT OF SAFET	Y AND EASE QU	ALITY AND					
3.1 3.2	IntroductionSimplified saf3.2.1Para	 There are p concerning How to 	 There are partly huge differences in national guidelines, e.g. concerning lock approach lengths How to match these numbers in the report? 							
3.3	3.2.2 Exar Detailed safet	Table (*fro	le 1: Lock approach (L _A) as a factor of ship dimension from top of jetty to lock entry), (s) single, (d) double							
		Lock Approach	BL _A /B	LL _A /L	Quality of driving					
		China	3.5 - 4.5 (s) 7.0 (d)	3.5 - 4.0 3.0 - 3.5*	A - B A - B					
		Dutch	2.2 (s)	1.0 - 1.2	B - C					
		French	2.9 (s)	0.5*	С					
		Germany	3.0 - 4.0 (s) 4 5 - 6 0 (d)	2.8	В					

3	APPROPR ITS USAGE	ATE FOI	ASSESSMEN R DESIGN	IT OF SAFETY AN	ND EASE QUA	LITY AND				
3.1 3.2	Introduction Simplified so 3.2.1 Pa	on . af ara	There are partl concerning loc • How to m	tly huge differences in national guidelines, e.g. ck approach lengths natch these numbers in the report?						
3.3	3.2.2 Ex Detailed sa	ar • fet	But there are o • How to fi • How to d	 But there are objective reasons for different s&e qualities How to find the necessary s&e quality? How to deal with a huge number of design criteria? 						
If the s&e-approach works properly, it should fit with all existing guidelines! This was the main reason behind the approach!		Col des dete	lection of ign criteria ermining the existing (analysis case) or	one-way, me Fairway conditions straight section, curve, low and strong longitudinal, cross and secondary currents, turbulence, regular or irregular banks, training measures, wide or narrow channel	Driving situation & traffic eting, overtaking, weak or Helmsman experience, skills, stress, distraction, deadline pressure, concentration attention, tiredness	strong traffic Hydrology, weather visibility, wind, rising or falling stage, low or high water				
Everybo able to re himself i report!	dy must be ediscover n the	• 1 (S&e	design case) quality	Load and speed deep draught, empty / ballasted vessels, cargo type, fast or moderate ship speed	Vessel with/without bow thruster, single or twin rudders, weak or strongly powered, one or two-wheeler	Information systems Radar, GPS, ECDIS, AIS, autopiloting				

3 APPROPRIATE ASSESSMENT OF SAFETY AND EASE QUALITY AND ITS USAGE FOR DESIGN

- 3.1 Introduction
- 3.2 Simplified safety and ease approach supporting concept design
 - 3.2.1 Parameters influencing waterway design
 - 3.2.2 Example
- 3.3 Detailed safety and ease approach supporting detailed design

• Simplified approach (Concept Design):

- Find an appropriate s&e quality
- to be used for designing the waterway dimension with the Concept Design
- The numbers given are related to s&e qualities
- Detailed approach (Detailed Design):
 - Use a rational approach to quantify the s&e quality in using simulation techniques
 - Find an appropriate ease reference case
 - and compare it quantitatively with the design case
 - Principle of comparative variant analyses!

3 APPROPRIATE ASSESSMENT OF SAFETY AND EASE QUALITY AND ITS USAGE FOR DESIGN

- 3.1 Introduction
- 3.2 Simplified safety and ease approach supporting concept design
 - 3.2.1 Parameters influencing waterway design
 - 3.2.2 Example
- 3.3 Detailed safety and ease approach supporting detailed design
- Definition of different s&e qualities and explanation by examples

Class	Designation						
A	Nearly unrestricted drive						
В	Moderate to strongly restricted						
	drive						
С	Strongly restricted drive						

Str	ucture of t	case propi	→ riat → f	to check te ease re or definin	the ap eference g an a	oproac ce cas ppropi	ch and es riate s	to &e	. N.D. 18	R5. PIPCN.			
3 3.1 3.2	APPF ITS U Introc Simp	ROPRIATE A ISAGE FOR luction Iified safety	NT C		SAFETY ch suppo	AND I	EASE	QUAL	ITY AN	ND			
	3.2.1 3.2.2	Paramete Example	ers influenci	r	г	The score is +1, if the argument coloured column is true. I	Arguments spea necessary eases Scoring rules for w t in the red coloured k f neither the left or rig	King for a higher score for design aterway related crite off column is true, it nt argument is true of	Cases where a may be acce eria: is -1, if the argument or if both are true, th	tower ease quality ptable for design in the right green e score is 0.	Score	Single factor	Group
 Assess the truth content of different p (waterway-, speed- and traffic-related) statements, 					1 2 3 4	Depth exploitation of waterway and type of load Level of training, personnel skills and Attenti and Wid water Bridge	Deep draught vesse dangerous goods wat Poorty trained pilot on waterway le passa Neckar	ers, low knowledge features and Ige of Ja River wi	Empty or ball dangerous goods, Optimally qualif he agstfeld th 123 r	asted vessels, no sufficient water depth ted and experienced msman ing a ad s or v	0 0* -1 +1*	1/7 1/7 1/7 1/7	7/20 = 35%
Leading to an appropriate s&e score, which will be assigned to qualities A, B or C					5 6 7	Unce Iong Cl Traffic situation, ship-ship and ship-bank-interaction Vessel equipment and instrumentation	stony river bed, mai One-way traffic, ma overta Main rudders only of bow thrusters, sea engine power, no in	Vessels ny times wind, fog ny manoeuvres as king or weakly powered going ships, low formation systems	speed or w 2 or more naviga interac Strongly power passive bow rudd dual propelers sis	pr vind tional lines, accepted tion forces red bow thruster or er, high engine power, optimal information ystems	0 +1 -1*	1/7 1/7 1/7	
	strong C	restrictions moderate to strong B	almost no	2 nd rating group: Vessel speed	Sco spe 8 9	oring rules for vessel speed rela eed range (2 nd line below), che Strived vessel speed over ground, individual drive Feasible speed range relative to water between v _{ert} and minimum speed to ensure stearability	ted criteria: Accordin ose the score accord ne ≥ 13 km/h (1) ≤ 2 km/h (+1)	g to the strived vesso ng to the numbers g sessary 10 – 12 km/h (0.5) 3 – 4 km/h (+0.5)	el speed (1* line bei iven below (in brack 5 – 9 km/h (0) 4 – 5 km/h (-0.5)	ow) or the necessary lets) or interpolate if < 4 km/h (-1) ≥ 6 km/h (-1)	+0.5	1/2	4/20 = 20%
	tricky drive score -1.0 -0.8 -0.6 -	not really easy ease for <u>design case</u> 0.4 -0.2 0.0 +0.2 +0	easy sailing ("dc") .4 +0.6 +0.8 +1.0	3 rd rating group: Traffic density	Scori 10 11	In rules for accounting the tri Hindrance due to recreational boating, especially human powered as rowing boats Restriction of necessary speed reduction in case of high traffic density of commercial navigation	affic density: Choose I Strong negative effect especially on possible average speed (+1) > 30,000 vessels per year (+1)	he score according Average hindrar navi (15,000 – 30,000 vessels per year (+0.5)	to the values given ince of commercial gation (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	n brackets below No significant influence on speed of freight vessels (-1) < 5,000 vessels per year (-1)	+1* -0.5	4/9 5/9	9/20 = 45%
		10	nai sco	ne. Sum of single scores(secondiast coluñ	ing, mulupilea by	r the weighting fa	ctor (last column) =	- U	.010			

Structure of the report

3 APPROPRIATE ASSESSMENT OF SAFETY AND EASE QUALITY AND

ITS USAGE FOR DESIGN

- 3.1 Introduction
- 3.2 Simplified safety and ease a
 - 3.2.1 Parameters influence
 - 3.2.2 Example
- 3.3 Detailed safety and ease approach supporting detailed design

Use e.g. so-called "reserves", e.g. concerning rudder angle:

Rudder reserve =

- maximum rudder angle (by construction),
- minus actual rudder angle,
- divided by the maximum rudder angle!

- Adjust the quantitative s&e approach,
- taking results from simulations,

- average the time-series of data over relevant simulation periods
- and match it together (weighted average) to a comprehensive s&e score

Table 66: Some examples of the approach proposed by to Gronarz (***) for choosing characteristic values defining the nautical easiness in terms of "reserves" (the values are generally between 0 – no reserves – and infinite – maximum reserves, but they may be negative too – drive is not possible), other explanations see *Table 64*

Group	Characteristic values from simulations (examples)	Group weight	Single weight / group
Waterway related	Minimum distance to sideways waterway limits, divided by net available navigational space	3/8	1/2
	Minimum distances to other vessels at encounters, divided by the net available navigational space		1/4
	Fairway width minus swept area width, divided by fairway width		1/4
Vessel and	Maximum rudder angle by construction, minus actual rudder angle of the main rudder, divided by the max. rudder angle	5/8	1/4
steering related	Maximum rudder turning speed by construction (e.g. 8°/s), minus actual turning speed, divided by e.g. 8°/s		1/4
	100% minus actual percentage of bow thruster usage, divided by 100%		1/4
		1/4	

RECOMMENDED STEPS IN WATERWAY DESIGN 4 4.1 Introduction to the three design methods After specifying the design case and corresponding local boundary conditions (steps 1,2) Use national guidelines if If application limits Use Concept **Concept Design** available and applicable Design as are exceeded (e.g. Choose appropriate s&e quality preliminary if flow velocity is Perform the design according to • Use international too high) or if there design \rightarrow the s&e score (basic dimension) guidelines if applicable bathymetry and are other good + increments if appropriate and accepted instead flow field for the arguments for a Check applicability limits • detailed design **Case by Case Study Compare all Detailed Design Practice Approach Compare results** Choice of method & modelling, Use practice data, which previous from national and Performance of the detailed results and are comparable to the international those from or design study design case guidelines as well Use data from previous similar Interpretation of results as practice projects if Check of decisive design cases projects Check application limits available Feedback to planners End of 3-Steps-Approach, if there are no doubts!

Consideration of impacts & feedback to the specification of the design case(s) ... (step 7)

Excursus: General agreements from the Antwerp meeting in June (with DST & MARIN)

General

- We need an understandable and rational design approach (based on local boundary conditions, available data, available experience, available modelling techniques, physics etc., not on "voting" or special interests) → 3 steps
- We should recommend reasonable design cases only (probability, risk, preventability)
 → new Chapter 2.5 (Definition and clarification of design cases former Chapter 7.2.3)
- We should consider different design aspects in using the Concept Design reasonably (s&e approach) and assign numbers to a chosen s&e quality → specified in meeting 15
- Everybody shouldn't overrate his preferred approach and should be open for the best or feasible approach → 3 steps
- We should be courageous in demanding for things that we think they are essential, e.g. performing detailed studies in a comparable sense → Controversial opinions (effort!) solved by restricting to "decisive design cases" and designating our approach to be "the ideal one" with adaptions if appropriate (budget!)
- Recognize that we write the report not for us (we are the experts and should know what to do), we write it for decision makers who have no idea what is really important, which data are needed, which approach is the best and feasible and we write it for clients of navigational studies who have to know how costly are navigational studies for waterway design purposes! → More details in appendixes

General agreements from Antwerp – continued

Detailed design

- Compare results of the design case to a reasonable reference case
 - → Transfer of knowledge, good experience and accepted design standards from the well known reference case to the design case
 - → Reduction of inaccuracies by focussing on "differences" instead of absolute numbers for assessing the nautical aspects → Add examples of reference cases
- Use a rational, quantitative approach for comparing variants, clearly together with absolute results, expert rating etc. → Tables for quantifying the detailed s&e-approach
- Use the "averaging principle" in case of significant influences of random effects ... (several drives instead of one or average of drives with comparable boundary conditions to end up with a comprehensive score) → Danube study DST, APPENDIX 6
- Consider that the chosen approach (e.g. scale model tests or simulators) may have significant deterministic inaccuracies, in using ship handling simulators especially in case of narrow cross sections, T/h close to 1, unsteady turbulence effects and 3D flow effects as those from secondary currents concerning shallow and confined water effects
- Be aware that the simulations can be very inaccurate!
- Solution: Principle of comparative variant analyses, especially concerning s&e!
- The reader gets hints on how to improve existing methods in order to "reach the best result with an possibly imperfect tool"

25

4 **RECOMMENDED STEPS IN WATERWAY DESIGN**

- 4.1 Introduction to the three design methods
- 4.2 Definition and aim of the Concept Design method
- 4.3 Practice Approach using existing examples
- 4.4 Detailed or case-by-case design

Fairways in rivers - conclusions from practice data

Waterway		Fairw alterna (ba	ay widt te singl sic wid	h for e-lane th)	Fairway width for two-way (basic width)			
, and the second s	Ea	se qual	lity	Domorko	Ea	se qual	ity	Demonto
	С	В	Α	Remarks	С	В	Α	Remarks
min W _F (straight sections) ¹⁾	3.0 B ²⁾			For security reasons	4∙B	5∙B	6∙B	3 B can damage the embankments
min D (over entire fairway width)	1.2 d d	1.3		Because of squat & efficiency of bow- thrusters	1.2 d 1.3 d		1.4 d	Because of squat & efficiency of bow-thrusters
min R (Δ F needed for R $\neq \infty$) ³⁾	2 L	3 L	4 L	Depending on natural condition	2 L	3 L	4 L	Depending on natural condition

- Matching of data from different sources (mainly from existing guidelines, which are collected in APPENDIX I)
- Assignation to s&e qualities (assessment by the members)
- Application limits and in which cases a detailed study will be recommended

The numbers are valid for average equipped and instrumented freight vessels and further restrictions concerning waterway properties as flow velocity (not more than around 1.5 m/s) or moderate wind speeds of an inland stretch (not more than around 5-6 BF).

4 RECOMMENDED STEPS IN	I WATERWAY DESIGN	
4.1 Introduction to the three designation of the Con	Table 1: Criteria speaking for a detailed ship simulation techniques (right co	study (left column) and the use of plumn) in the design process
4.2 Demnition and aim of the Con 4.3 Practice Approach – using ex	Need for performing a detailed study for design	Ship simulation techniques needed
4.4 Detailed or case-by-case	There are large or inexplicable differences between data from different guidelines, recommendations of WG 141 using the Concept Design Method and those from waterways in use.	There are doubts about the decisive design cases, because e.g. the Concept Design or practice data do not deal with possibly relevant aspects as draught.
design	The Concept Design does not tackle the design case considered, e.g. because of different local boundary conditions or different s&e demands	The design relevant vessels have special properties, e.g. type, propulsion, steering aids.
Criteria speaking for a detailed study, e.g. special	The waterway has a difficult layout like sharp or sequential turns, narrow widths, variable depths, junctions, lock approaches, bridges, turning areas, berths etc.	Large discrepancy between space available and navigation needs
vessel properties, possible reduction of construction	The environment plays an important role, e.g. intense or variable longitudinal or cross currents, visibility, turbulence or high water level variations.	Significant construction cost savings seems possible through optimization of engineering works and designs
 costs, irregular conditions Recommendation on 	There is a need to specify the operational limits or to accept higher operational limits than usual in design.	When evaluating risk-based design and traffic management
performing an "ideal study" → details in Appendix 5	There are doubts about using a lower standard for design than in comparable projects or relevant waterways in use.	Training of captains to fulfil standards
	Human factor effects as visibility or reaction time have great impact on design.	To demonstrate the results and nautical aspects of design
	Accounting for high traffic density in design.	Considering special traffic or operations
	To plan and check aids to navigation.	To gain acceptance for navigational needs
	When evaluating risk-based design and traffic management.	If the design causes severe impacts e.g. concerning river ecology or water stages, leading to a possibly modified design.

- 5.1 General remarks and guide notes how to use the recommendations in Chapter 5
- 5.1.1 Introduction to the procedure
- 5.1.2 Determine the necessary quality of driving for design
- 5.1.3 Determine the waterway dimension

5.1.4 Account for extra widths (Extended Concept Design")

- Explaining the application of the 3-Steps-Approach for selected waterway dimensions.
- Reference to Appendix V how to account for "extra widths", which are not treated in Chapter 5.

h

1:m。

trapezoidal

canal

- 5.1 General remarks and guide notes how to use the recommendations in chapter 5
- 5.2 Canal fairway width and cross section
- 5.2.1 Introduction for canals
- 5.2.2 Concept Design for canals
- 5.2.3 Practice approach for canals
- 5.2.4 Detailed design for canals

You will find the same substructure of the chapters also for other waterway dimensions!

|--|

- 5.1 General remarks and guide notes how to use the recommendations in chapter 5
- 5.2 Canal fairway width and cross section
- 5.2.1 Introduction for canals
- 5.2.2 Concept Design
 - for canals
- 5.2.3 Practice approach
- 5.2.4 Detailed design for

Summary of considered guidelines!

Table 1:Canal fairway dimension in existing guidelines as a factor of ship dimension for deepdraught vessels (no relevant wind increments), straight sections and no relevant cross flow velocities)

	Shin (B y L y T)	Two-way (bank slope 3/1)			Single-lane		Driving quality	
		W _F /B	h/T	n	W _F /B	h/T	Level	
China Canal	Average (Class II – V)	4.4	1.3	4.4	-	-	А-В	
China Channel	Average (Class II – VII)	4.4	1.4	6-7	-	-	А-В	
China River	Average (Class I – VII)	4.4	1.2	-	2.3	1.2	A-B	
Dutch normal	11.45 x 185 x 3.5	4.0	1.4	8.7	2	1.3	A-B	
Dutch narrow	11.45 x 185 x 2.8	3.0	1.3	6.7	-	-	B-C	
France	11.40 x 180 x 3	3.77	1.5	6.25	-	-	B-C	
Germany	11.45 x 185 x 2.8	3.3	1.4	5.6	2	1.4	B-C	
Russia	16.5 x 135 x 3.5	2.6	1.3	-	1.5	1.3	С	
US River	10.7 x 59.5 x 2.7	~3.3	~1.3	~4.9	~2.2	1.3	B-C	

Structure of the report		Recommended "basic" waterway dimensions								
			Fairway width for alternate single-lane				Fa	Fairway width for two-way		
5		Waterway	Eas	se qual	ity	Remarks	Ease quality		ity	Remarks
5 1	Conorol romarka		С	В	Α	Remarks	С	В	Α	Remarks
5.1	recommendations	min W _F (straight canal sections)	2.1	3 ¹⁾		For security reasons	3.	B ²⁾ 4·	B ³⁾	2.5 B can damage the canal
5.2	Canal fairway widt	min n	25	35	45	To keep on	35	5	7	To keep on
5.2.1	Introduction for ca		2.0	0.0	4.0	speed	0.0	0	'	speed
5.2.2 5.2.3	Concept Design for canals Practice approach	min D (over bottom width)	1.3	d		Because of squat & efficiency of bow thrusters	1.3	d	1.4 d	Because of squat & efficiency of bow thrusters
5.2.4	Detailed design fo	min R (Δ F needed for R $\neq \infty$)	41	7 L	10 L		4 L	7 L	10 L	
		max v _{flow} (longitudinal)	(0.5 m/s				0.5 m/s		
Avoidance of "interim s&e-qualities" is still under review (state February 2017)		$\begin{array}{l} \max \ v_{\rm cross} \\ (\text{averaged over L}, \\ \Delta F \ \text{needed for} \\ v_{\rm cross} \neq 0) \end{array}$	0.5 m/s			0.5 m/s				
		design v_W (inland) (ΔF needed for empty/ballasted or container vessels at $v_W \neq 0$)	5-6 BF (8.0 – 13.9 m/s; 10.5 m/s according to Dutch Guidelines)			5-6 BF (8.0 – 13.9 m/s; 10.5 m/s according to Dutch Guidelines)				
		design v_W (costal) (Δ F needed for empty/ballasted or container vessels at $v_W \neq 0$)	6-7 BF (10.8 – 17.2 m/s; 13.5 m/s according to Dutch Guidelines)			6-7 B m/ accol G	F (10.8 - 's; 13.5 r rding to l auideline	- 17.2 n/s Dutch s)		

- 5.1 General remarks a recommendations
- 5.2 Canal fairway wid
- 5.2.1 Introduction for ca
- 5.2.2 Concept Design for canals
- 5.2.3 Practice approach5.2.4 Detailed design for

Examples how to account for extra widths, e.g.

- to up- or downgrade the ease level
- Leading to 2.1.B for A or 1.9.B for C for onelane traffic

General remarks Further explanations how to account for extra widths:

If higher vessel speeds should be enabled even while encountering, reference is made to Chapter 2.3.1, where safety distances for counteracting the interaction forces are given in its relation to the relative ship v/v_{crit} and to the remarks in

Table 20 concerning the parts of extra distances, which are included in min W_{F} . Because the safety distances increase with v/v_{crit} according to Table 9, the basic width may be increased accordingly if higher v/v_{crit} should be enabled, see example in Chapter 2.3.1. This would e.g. lead to an increase of 2 (0.35 - 0.3) B = 0.1 B concerning the safety distances to banks and gives 2.1 B for the basic width. This number may be assigned to a s&e quality tending more to A than B. If, on the other hand, the extra widths concerning instabilities of about 0.4 B, which are included in 2 B according to the remarks in Table 20, could be reduced to 0.3 B, which is the number for encounters and assumes a very cautious and attentive drive also over long distances, then the basic width may be reduced to 1.9 B, which may tend to a s&e quality C.

With the same arguments and the numbers given in Table 9 for higher vessel speeds in case of a two-way canal, the basic width, which is assigned to a s&e-quality between A and B of about 4.B, may be further increased by 2.(0.6 - 0.5).B concerning the increased safety distances to the banks and (0.35 - 0.3).B between the vessels, leading to 0.25.B more space needed. If we would add the extra widths due to instabilities and human factor not statistically as assumed in Table 20 but arithmetically, which means that both vessels which are involved in an encounter must not take care of each other, there will be another extra width of about (2 - $\sqrt{2}$)-0.4.B \approx 0.25.B, leading to 0.5.B more space, giving 4.5.B in total concerning the basic width, which may be assigned to a safety and ease of navigation standard A. If one look for the necessary minimum width for standard C on the opposite, one may use the findings in Chapter 2.3.6, defining a minimum value for the extra width due to instabilities of $\geq 2 m$, according to 0.17.B for Class Va or Vb vessels, this leads to $\sqrt{2}$ -(0.3 - 0.17), B \approx 0.2.B less necessary width and thus 2.8.B for the entire basic width. This value is more than experiments made in DST, showing that encounters may technically be possible even with 2.5.B only. But this demands for an extremely reduced speed, which standard may be far below C.

- 5.1 General remarks and guide notes how to use the recommendations in chapter 5
- 5.2 Canal fairway width and cross section
- 5.2.1 Introduction for canals
- 5.2.2 Concept Design for canals
- 5.2.3 Practice approach for canals
- 5.2.4 Detailed design for canals

- But the report offers several hints on how to reduce inaccuracies,
- e.g. reduction of bow thruster efficiency by blockage effects

More hints in Appendix IV

Structure of the report

5 **RECOMMENDATIONS FOR SPECIAL**

- 5.1 General remarks and guide notes how recommendations in chapter 5
- 5.2 Canal fairway width and cross section
- 5.3 Fairway widths in rivers

Practice in rivers (fairway marked by buoys) with conclusions concerning Concept Design example one lane (3·B for s&e B/C) Inaccuracies may have several sources, e.g. the flow model or bathymetry, not always the simulator!

Hints on how to improve results + examples for simulations (together with Appendixes 6 and 7)

Main simulation bridge SANDRA with an inland vessel sailing on the river Rhine

Class Vb sailing at mean water on the existing river stretch

DST SANDRA-Simulator: Danube River close to Straubing

5 **RECOMMENDATIONS FOR SPECIAL DESIGN ASPECTS** 5.1 General remarks and guide notes how to use the recommendations in chapter 5 5.2 Canal fairway width and cross section 5.3 Fairway widths in rivers Width and headroom of bridge openings 5.4 5.5 Length and widths of lock approaches 5.6 Junctions **Recommended min. bridge opening dimensions Turning basins** 5.7 5.8 Berthing places Bridge opening single-lane Bridge opening two-way Waterway Ease quality Ease quality Remarks Remarks С С В Α В Α Advice to look into Minimum Minimum existing guidelines 3 B min W_F 2 B safety margin safety margin 5.0 m 5.0 m instead, e.g. Chinese Add minimum Add minimum 1.0 H 1.0 H min H_B safety margin safety margin + S + S 0.3 m 0.3 m

Decision of INCOM to establish a new WG concerning "Headroom Clearances under Bridges"

Wea	kest	part	of t	the	report!	
		•			•	

- It was almost impossible to agree on specific numbers for lateral safety distances!
- Detailed Design recommended in many cases!

Structure	of the	report
-----------	--------	--------

5	RECOMMENDATIONS FOR SPECIAL DESIGN ASPECTS							
5.1	General remarks and guide notes how to use the recommendations in chapter 5							
5.2	Canal	fairway width and cross	section					
5.3	Fairwa	ay widths in rivers						
5.4	.4 Width and headroom of bridge openings							
5.5	Length	Practice: bri	Practice: bridge opening ratio					
5.6	Junctio	River	Section [km]	W _u /B (u)*	W _u /B (d)**			
5.7 5.8	Turnin Berthi	Rhine	424.430 – 595.630	3.3 3.1 (3.1)	2.2 2.6 (2.6)	There are still		
0.0	Dertim	Neckar	9.746 – 110.017	2.1 2.4 (2.2)	1.9 <mark>2.0 (1.7)</mark>	points!		
		Waal – Nieuwe Maas	934.000 – 1001.000	6.6	4.5			
		China, free flowing rivers (upper bottom width)		3. 6	0) 2.8			
		China, restricted channels (upper bottom width, ratio for broadest vessels only		3.8 (two-	way only)			
		China, canals (ratio for broadest vessels only)	China, canals (ratio for broadest vessels only)5.3 (two-way only)					

5 RECOMMENDATIONS FOR SPECIAL DESIGN ASPECTS 5.1 General remarks and guide n recommendations in chapter 5.2 Canal fairway width and cros 5.3 Fairway widths in rivers

- 5.4 Width and headroom of bridg
- 5.5 Length and widths of lock app
- 5.6 Junctions
- 5.7 Turning basins

 $\Delta L_{drift}[m] \approx C_{\Delta I, drift} L[m] \cdot v_{Flow}[m/s]$

E 4		Dimens	ions of I	perthing plac	es as a fa	ctor of L & B
5.1	General remark		Length	Width	Layback	Quality of driving
5.2	Canal fairway w	Dutch	1.2 L	> B	0.5 B	A-B
5.3	Fairway widths i	Germany	-	> B	0.3 B	С
5.4	Width and head	US	-	1.2 E	3	A
5.6	Junctions	PIANC	1.1	> B + fender	0.3 B	С
5.7	Turning basins	PIANC	1.2	> B + fender	0.5 B	A
5.8	Berthing place	s and wa	aiting a	reas		
	 ↑]		
Fairway width (2 way traffic)			As always • No reco or wait • but if "y numbe	: ommendat ing places yes", take rs ("PIAN(tion, <i>whether</i> berthin are necessary, the recommended C")	

Length of berthing area

5 CONCLUSIONS

Not finished yet. Maybe summarizing the "Absolutely essential fundamentals of WG 141 report" of the Antwerp-meeting 2016.

General:

- Understandable and rational design (choice of methods, quantification)
 - \rightarrow 3-steps-approach with rational decisions + quantified s&e-approach
 - → Process recommendation instead of giving numbers for complicated design
- Use reasonable design cases only → Accept nautical restrictions for seldom cases
- Consider the target group of the report
 - → Decision makers who don't know what is really important, which data are needed, which approach is the best and feasible ...
 - → Clients of navigational studies who have to know how expensive navigational studies for waterway design purposes may be

→ Layman receive comprehensive background information (Appendixes) Methods:

- Concept Design (huge number of influencing parameters and different guidelines):
 - \rightarrow s&e approach replaces partly adding of increments (as in MARCOM 49)
 - \rightarrow hints on using alternative methods if application limits are reached
- Practice (partly strongly varying and inaccurate data):

ightarrow Use it with care because local boundary conditions may dominate design

5 CONCLUSIONS

- Detailed Design (how to account for method-specific inaccuracies and random effects?):
 - → Consider all possibly relevant variants (e.g. by aid of Concept Design) with less effort (e.g. one simulation only) with less effort and restrict simulations to decisive design cases
 - \rightarrow Apply the principle of comparative variant analyses
 - → Transfer of knowledge from reference cases with good experiences and accepted s&e quality to design case
 - → Use objective results (time series of relevant data) to *quantify* s&e
 - → Use the "averaging principle" for decisive design cases to reduce random effects (several drives instead of one or average of drives with comparable boundary conditions) to end up with a comprehensive score
 - → Focus on *differences* between reference and design case, not absolute values
 - → Use all available information, also absolute values, expert rating ...
 - → Interpret the results properly, considering that even the best approach used is not able to eliminate all inaccuracies (e.g. in case of narrow cross sections, T/h close to 1, unsteady turbulence and 3D-flow effects as those from secondary currents)
- The report provides assistance to all a.m. aspects, clearly together with other codes of practice, e.g. concerning SHSs usage (not yet involved)

Extremely varying

- bridge opening ratios and
- lock approach widths and lengths

Practice data must be interpreted with care!

*/**Bu = usable widt	/**Bu = usable width, B = beam ship, u = upstream, d = downstream						
River	Section [km]	В	u/B (u)*	Bu/B (d)**			
Rhine	424.430 - 595.630		3.3	2.2			
Neckar	9.746 – 110.017		2.1	1.9			
Waal – Nieuwe Maas	934.000 - 1001.000		6.6	4.5			
Average ratio			4.0	2.9			

River	Bh/B (u)	Bh/B (I)	Lh/L (u)	Lh/L (I)
Main	2.8d, 1.8s	2.8d, 2.4s	~ 2	.5
Neckar	8.3t, 2.6d, 2.3s	4.2t, 2.5d, 2.0s	0.7 – 1.4	1.0 – 2.1
Nederrijn/Lek	2.9s	3.3s	6.3s	4.0s
Maas	8.2t, 4.9d, 9.4s	6.9t, 4.6d, 3.2s	4.3t, 3.3 d, 4.6s	4.2t, 2.5d, 3.9s
Mosel (Apach lock)	3 (s)	3s	1.26-1.76s	1s
France (CEMT/ITF class Va)	>2.15s	>2.15s	>0.86s	>0.86s
Average ratio	8.3t, 3.4d, 3.6s	5.6t, 3.3d, 2.7s		

B(L)h = beam (Length) harbour – B(L)s = beam (Length) berthed ship(s), u = upper harbour, I = lower harbour, d = double lock, s = single lock, t = triple lock

APPENDIX III: APPROPRIATE ASSESSMENT OF SAFETY AND EASE QUALITY

AND ITS USAGE FOR DESIGN

- III.1 How to use the approach
- III.2 Simplified safety and ease approach
- III.3 Detailed safety and ease approach

Comprehensive information on the ideas and numbers behind the s&e approach and recommendations how it should be applied!

III.4 Further examples of applying the safety and ease approach

Detailed information on how to "design" the detailed s&e approach: E.g. parameters for making distances dimensionless

Table 62: Assignation of ease of navigation categories to the vessel speed over ground					
designation of vessel speed	speed over ground	in order to achieve:	ease score		
no restrictions ≥ 13 km/h avoiding severe damage and dang and limb in case of accidents		avoiding severe damage and danger of life and limb in case of accidents	A		
adapted speed	ca. 9 – 10 km/h	reduced interaction forces in case of meetings	А, В		
small canal speed	ca. 7 km/h	reduced wave heights, e.g. to avoid conflicts with pleasure boats	В		
reduced speed	ca. 5 km/h	reduced bank forces	B, C		
strongly reduced speed	ca. 3 km/h	no significant interaction forces			
creep speed	< 2 km/h	no significant damage in case of accidents	С		
F a background of ohim anond aritaria					

E.g. background of ship speed criteria

Table 67: Scaling parameters, physical causes and order of magnitude of safety distances s* in terms of ship beams B [VBW, 2016], which can be used as length scales L_c for making characteristic values from simulations dimensionless

Scaling	parameter		Physical cause and order of magnitude of approximate ship-to-ship or ship-to-bank
Width	Ship speed	Traffic situation	safety distances s* for vertical banks
Wide river	High cruising speed	One-way traffic, encounters and overtaking	Significant deformation of the primary wave field close to the ship and at the bank when sailing close to the bank $(s^* \approx B)$
"	Moderate cruising speed	n	Limited deformation because the ship speed is lower (<i>s</i> [*] ≈ <i>approx. 2/3 B</i>)
Narrow river, canal	n	"	Smaller deformation of the primary wave field because the relative eccentricity of the ship's course is smaller than in wider channels ($s^* \approx 1/3 B$)
"	Cautious speed	One-way traffic and encounters	Further reduced wave heights because the ship speed is lower (corresponding to German guidelines for standard canal cross sections: s* ≈ 2 m or 1/6 B ship-to-ship, 4 m or 1/3 B ship-to-bank)
"	Very slow speed	"	Bank forces are not relevant. Shipmasters must be able to find their way nevertheless, therefore reduction up to visibility distance $(s^* \approx 2 \text{ m or } 1/6 \text{ B})$

Structure	of the	report

Comprehensive information (as in specialist book) on the usage of simulation techniques!

APPENDIX IV: DETAILED OR CASE-BY-CASE-DESIGN – USING SIMULATION TECHNIQUES OR FIELD INVESTIGATIONS

- IV.1 Preliminary remarks and definition
- IV.2 General remarks for using simulation techniques
- IV.3 Influence of human factor in using ship handling simulators
- IV.4 General approach in using fast time and full bridge simulators for designing waterways
- Introducing the NASA TLX (Task Load Index) Test for assessing the "work load" in steering the vessel.
- The index can be compared between the ease reference case "erc" and design case ("dc") to consider the human factor aspects *quantitatively*!

Name of pilot:	Task (driving situation) / variant:	Date / time	•			
Work load aspect / Corresponding question		Assess- ment of a score between 0 and 1	Weight (from table below)	Weigh- ted score		
Mental demand / How mentally very low = 0, very high = 1						
Physical demand / How physic task?: very low = 0, very high =						
Temporal Demand / How hurri the task?: very low = 0, very hi						
Performance / How successful what you were asked to do?: p						
Effort / How hard did you have level of performance?: very low						
Frustration / How insecure, dis and annoyed were you?: very	couraged, irritated, stressed low = 0, very high = 1					
Average score						

Comprehensive version of Chapters 2.3.X

APPENDIX V: EXTENDED CONCEPT DESIGN – ACCOUNT FOR EXTRA									
	WIDTHS	Formu	ulation and red	commended	Remarks				
V.1	How to account	Extra width ΔF_c in curves (one vessel, one driving direction)							
	for extra widths	Approximation for applying the Concept Design within its R/L-ranges (R/L \ge 5)			Note that ΔF_c is very much higher for shallow draft or high longitudinal flow velocities in case of a downstream drive than for deep draught vessels or ships sailing				
V.2	Understanding of s	the	e chosen T or rection, the lo	T/h, the driving	see Chapter 2. sy) way of driv	driving (s&e-qualities A, B).			
V.2.1	Ship-induced wave	 velocity as well as the way of driving from , Chapter 2.3.8 or Appendix 5 More precisely and generally for In case of sailing not very much faster than the flow velocity and using all navigational means, measurements show that c_c may be reduced to 0.25 for loaded and 0.5 for empty vessels, but not further (s&e- 						an the flow	
V.2.2 V.2.3	Navigating bends							, ced to 0.25 for further (s&e-	
V.2.4	Influence of longitu	R/L<5, use the Pythagoras- approach in with $c_{F} = (2 \cdot c_{C})^{1/2}$ for velocities, a detailed study will be recommended.							
V.2.5	Influence of cross of	с _с 0.	≤ 0.5 and c _F 5 or c _F from A	= c_c + 0.5 for c_c > ppendix 5	Exa	Example extra widths in curves			
V.2.6	Driving close to gro	(recommended for rivers)			c _c for Class Va vessels				
V.2.7	Wind effects				Flow velocities / Waterway				
Providing approximation formulae for all relevant extra		Vessel	Canal v _{Flow} ≤ 0.5 m/s, always acting in driving direction v≈9 km/h, v ~10.8 km/h	$\begin{array}{c} v_{Flow} \leq 1.0 \text{ m/s} \\ \approx \text{ impounded river} \\ v_{Flow}/v = 0.4 \\ v_{ag} \approx 5.4 \text{ km/h upwards and} \\ 12.6 \text{ km/h downwards} \end{array} \qquad \begin{array}{c} v_{Flow} \leq 1.5 \text{ m/s} \\ \approx \text{ free flowing river} \\ v_{Flow}/v = 0.4 \\ u_{ag} \approx 8.1 \text{ km/h upwards an} \\ v_{ag} \approx 8.1 \text{ km/h upwards an} \\ \text{ km/h downwards} \end{array}$		1.5 m/s ving river, 4 upstream wnstream, owards and 16.2 wnwards			
widths, t necessa	ogether with ry parameters for			(italic letters: v _{Flow} =0.0 m/s)	Downstrea m drive	Upstream drive	Downstream drive	Upstream drive	
relevant threshol loaded/e	scenarios and ds (c _c ≤ 0.25/0.5 mpty).		GMS (110x11.4, Class Va)	empty 0.6 <i>(0.4)</i> (0.5 Dutch guidelines) loaded 0.3 <i>(0.25)</i>	empty 0.8 loaded 0.4	empty 0.4 loaded 0.25	empty 0.9 loaded 0.4	empty 0.4 loaded 0.25	

APPENDIX V: EXTENDED CONCEPT DESIGN – ACCOUNT FOR EXTRA WIDTHS

V.1 How to account for extra widths

Structure of the report

INVESTIGATION OF SAFETY AND EASE OF TRAFFIC ON THE RIVER DANUBE BY REAL TIME SIMULATIONS

APPENDIX VI: APPLICATION OF THE DETAILED DESIGN + REFERENCES APPROACH BY AN EXAMPLE (Danube downstream Straubing)

Class Vb sailing downstream

- Strictly applying the principles of
 - comparative variant analyses and ,
 - a quantified s&e approach (using weighted averages of different "reserves"), as well as
 - the averaging principle!
 - **Reference case = present** nautical conditions
- **Design case = Danube River improvement** using river training, same vessels, almost the same fairway, but deeper draught, other flow field

Plan to finish the report – state 2nd February 2017

- Version for reviewers from INCOM: Middle of March
- Meeting together with reviewers: Middle of April
- Final editing including references: Up to June 2017

